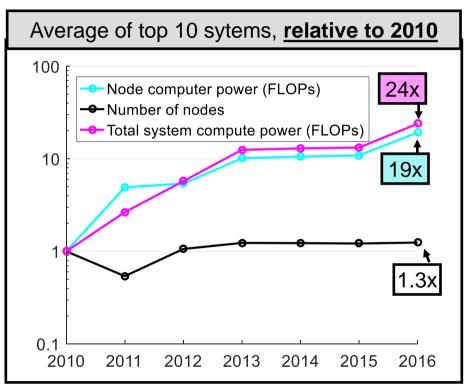
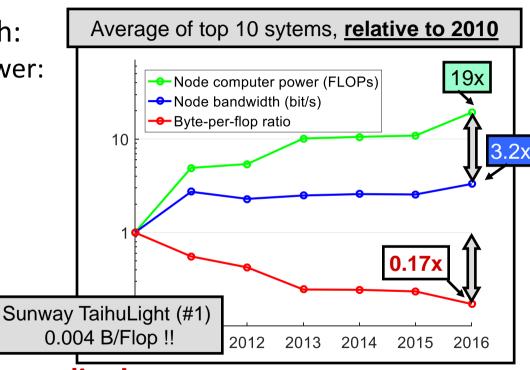
Optical interconnects for energy efficient HPC


Keren Bergman, Sébastien Rumley

Columbia University
Lightwave Research Lab

Trends in ultra-scale HPC

- Evolution in the last six years:
 - Average total compute power:
 - 0.86 PFlops → 21 PFlops
 - ~24x increase
 - Average node compute power:
 - 31GFlops \rightarrow 600GFlops
 - ~19x increase
 - Average number of nodes
 - 28k →35k
 - ~1.3x increase
- → Node compute power main contributor to performance growth



[S. Rumley, et al. Optical Interconnects for Extreme Scale Computing Systems, accepted for publication, Elsevier PARCO1

Interconnect trends in ultra-scale HPC

- Node compute power growth:
 - Average node compute power:
 - 31GFlops → 600GFlops
 - ~19x increase
 - Average node bandwidth
 - 2.7GB/s →7.8GB/s
 - ~3.2x increase
 - Average byte-per-flop ratio
 - 0.06 B/Flop → 0.01 B/Flop
 - ~6x decrease

→ Growing gap for Interconnect scaling!

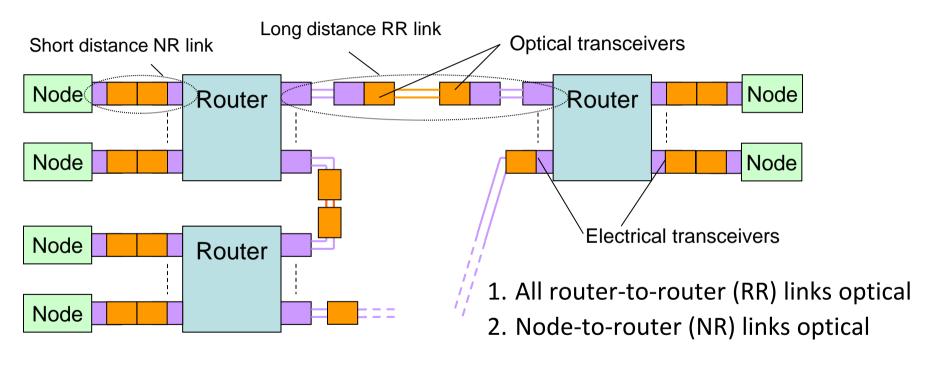
→ Can this trend continue?

[S. Rumley, et al. Optical Interconnects for Extreme Scale Computing Systems, accepted for publication, Elsevier PARCO]

Interconnect energy efficiency

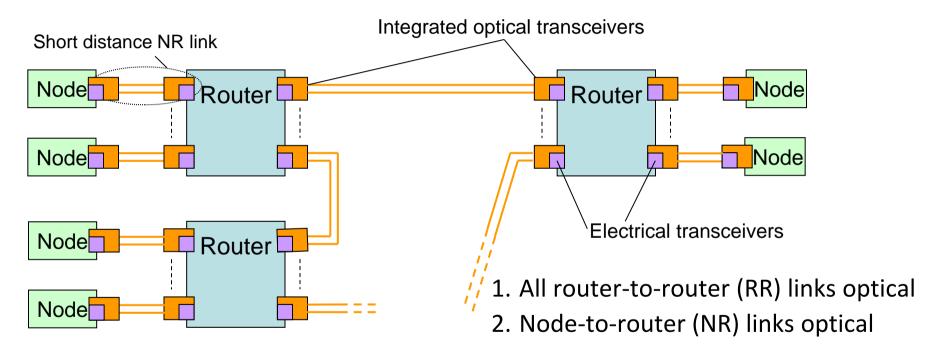
Switching

4 short reach hops

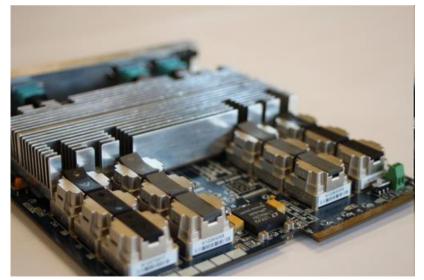

1 long-reach hop

Sunway TaihuLight

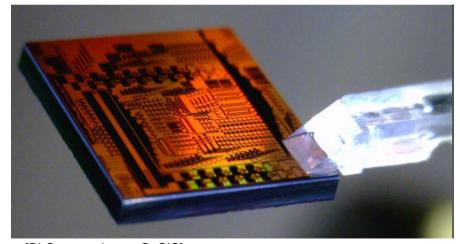
- Today's interconnect energy consumption:
 - Switching a bit: ~30pJ/bit
 - Sending a bit, short-reach electrical link: ~10 pJ/bit
 - Sending a bit, long-reach optical link: ~30 pJ/bit
 - \rightarrow Total budget (diameter 3, one optical link): (4x30) + (4x10) + 30 = 170 pJ/bit
- Assume:
 - Exascale at 75% efficiency = 1.3 EFlop peak, 0.004 Byte/Flop
 - →40 Pb/s total interconnect bandwidth
 - \rightarrow Total interconnect consumption: (170 · 10⁻¹²) x (40 · 10⁻¹⁵) = 6.8 MW
- 6.8 MW: More than a third of target 20MW Exascale power budget!
 - Live with that power consumption?
 - Tolerate further decrease in byte/flop?
 - Improve interconnect energy efficiency!


Improving energy efficiency

Improving energy efficiency


- 3. Co-packaged optical transceivers
- (4. Improve routers)

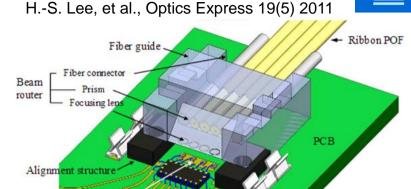
Integrated optics – possible solutions



Vertical Cavity Surface
 Emitting Laser (VCSEL) links

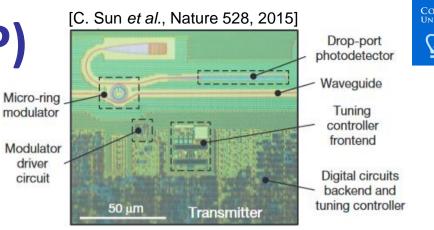
Silicon Photonics

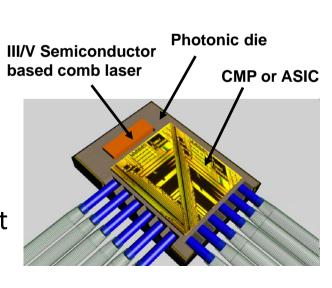
[Imperial College – MP7 board]



[PLCconnections – OpSIS]

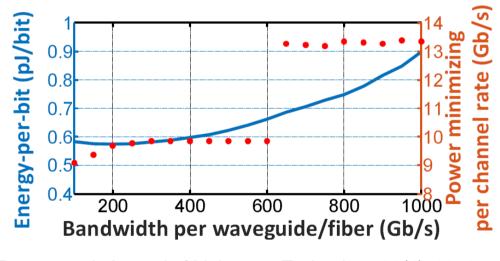
VCSELs


- Vertical emission by definition
 - If directly mounted on top of CMPs or ASICs, problem with heat sink
 - If "2.5D" integrated, need to electrically "escape" the ASIC/CMP
 - Subject to pin, substrate limitations
 - Less power efficient due to increased capacitances
- Bandwidth density: around 1-5 Gb/s/mm² (now)
 - 5 Gb/s/mm² \rightarrow 20 cm² footprint for 10 Tb/s
 - Paths for scaling to ~50 Gb/s/mm²
 - Shortwave wavelength division multiplexing (SWDM)
 - Higher data-rates, modulation formats (PAM4) (increased latency)



Silicon Photonics (SiP)

- All optical operations in silicon (except light generation)
- Single-die approach
 - Zero-Change Photonics
 - Photonic and electrical structures in the same die
- Two-dies approach (2.5D and 3D)
 - Photonic die made in SiP optimized process
 - Permits to use of Germanium for detectors
 - Electrical die for digital logic and photonic drivers
 - Two dies combined with flip-chip attachment
- ~100 Gb/s/mm² can scale to 1Tb/s/mm²



Silicon photonics

COLUMBIA UNIVERSITY

- Chip-edge coupling possible
 - Pitch between couplers can be as low as 20 μ m [1]
 - →Support for 100+ fibers around the optical chip
- High bandwidth density
 - 320 Gb/s per waveguide/fiber demonstrated [2]
 - Higher densities possible up to 1 Tb/s
- Energy efficiency:
 - Below 1 pJ/bit [3] (excluding SERDES)

[1] F. E. Doany, et al. Journal of Lightwave Technology 29(4), 2011

[2] R. Ding, et al. IEEE Photonics Journal 6(3), 2014

[3] R. Hendry, et al. Hot Interconnects, 2014.

Conclusions

- A power wall is clearly approaching for interconnects
 - So far, avoided by means of bandwidth tapering
 - But how far can we further go? 0.001 B/Flop? 0.0001 B/Flop?
- Energy-efficiency improvements are possible
 - In particular, more integrated, energy optimized optics
- Future integrated photonic solutions:
 - MCM-to-MCM (Multi-chip module) links with VCSELs
 - More mature, but bandwidth density limited
 - Chip-to-chip optical links with Silicon Photonics
 - Long-term solution, manufacturing ecosystem challenges